

Simulator Evaluation of System Developed with the HumanAutomation Design and Analysis Methodology

Michael Feary
NASA Ames Research Center

Lance Sherry
San Jose State University Foundation

Arash Aghevli QSS Corporation

Project background

- Milestone Element of NASA Airspace Systems Human - Automation Design Methods and Tools (HADMT) project focusing on aviation automation and interface design tools
- Goal of project is to provide methods and tools to the aviation automation design community

Contents

- Tool Background
- Tool Development
- Progress to date

- Tool Background
- Tool Development
- Progress to date

Issues

- Current HCI Evaluation Methods/Tools do not have wide acceptance in aviation automation design community without mandates, most likely because there is additional cost (time and \$) with little perceived benefit
- Human Computer Interaction (HCI) Evaluation for automation needs to be addressed earlier in the design process (FAA HFT, 1996, etc.)

Result: Need to give *useful* HCI evaluation tools and techniques to designers/engineers that can be integrated early into mainstream engineering processes

Working Definition: *Useful* HCI Design Tool

- Reduces Costs: Minimize training or interpretation requirements to evaluate devices and provide useful evaluations
- Supports Iteration: Provide rapid build evaluation cycles
- Integrates HCI Evaluation: Minimize additional steps for designer to evaluate during design
- Comprehensive: Interface evaluation must examine all machine behaviors/tasks, not just those seen on the interface
- Provides Scalability: Ability to build and evaluate complex, dynamic devices

Tool User Group

- Targeted design stage: Requirements Specification
- Support is needed to uncover operational design decisions in Requirements Specification stage.
 - Decisions not addressed in Requirements Specification will be encountered in software development, and software developers are not required to have aviation design expertise
- Users in Requirements Specification stage are domain experts
- Domain experts may not have programming or HCI Evaluation expertise

Tool Requirements Summary

- Need a tool which domain experts in requirements specification process without programming or HCI Evaluation expertise can learn to use in hours or days of training, not weeks or months (Reduce costs)
- Need a tool which supports rapid, iterative build evaluate cycles from the beginning of the design process
- Need a tool which can be used as a platform for other HCI analyses (integrated HCI)
- Need a tool which allows domain experts to develop the machine behavior, and connect the machine behaviors to the User Interface (comprehensive)
- Need a tool which allows users to build real world, complex devices (Scalability)

- Tool Background
- Tool Development
- Progress to date

Tool Foundation

- Based on Operational Procedure Tables Method (Sherry, 1995)
- Method has been used by domain experts but with support
- Used successfully by avionics manufacturers for the design of Autopilot and FMS software (complex/hybrid systems)for in many commercial aircraft (Airbus, Boeing, McDonnell Douglas)

 <u>Challenge:</u> extend advantages of method through tool to domain experts with as little training/disruption as possible

Tool

 Tool combines logic tables from operational procedure method with graphical design capability to create discrete simulations

Logic Specification: (1)

- Tables allow iterative build test functionality, because you can test one function at a time
- Tables specify entry conditions to machine behaviors which:
 - Requires user to completely specify machine behavior (useful for software development) (Comprehensive)
- Tables have hierarchy to build complex devices (Scalability)

Logic Specification: (2)

- Representation allows for coverage tests (Comprehensive and HCI Integration)
- Representation can be used for many different types of devices (Scalability)
- Tool provides ability to attach natural language descriptions of machine behaviors (HCI Integration)

User Interface Development

- Graphics objects are treated as system variables with properties in logic tables, so logic analyses are applicable
- Simple graphic objects can be built in tool
- More complex graphic objects can be built externally and imported
- Tool can handle static and dynamic graphical objects
- Allows for demonstration of a "dynamic storyboard" early while specifying requirements

Tool Usability

 Users without formal programming experience but with domain knowledge able to build devices in tool

HCI Evaluation in Tool

- First analysis is coverage tests of logic for building interface conducted by designer from the very beginning of the design process.
- Traditional HCl evaluations can be conducted with an understanding of when the evaluation is complete (when all device behaviors have been examined).
- Additional automated analyses built into the tool provide evaluation of HCI problems that are not found by traditional usability evaluation or inspection methods

- Tool Background
- Tool Development
- Progress to date

Response to Issues(1)

Scorecard so far:

- Reduce cost of use:
 - Limited data so far, but Tool has been used with 3-4 days of training
- Support Iteration:
 - Automatic Code Generator rapidly provides prototypes, and simulations have useful for demonstration and evaluation purposes
- Integrate HCI Evaluation:
 - Computational Analyses are being developed that can be used by personnel without an HCI background
 - Examine aspects of design not caught with current usability inspection methods

Response to Issues(2)

Comprehensive:

 Logic Tables allow evaluation of fit between machine behavior and interface behavior

Scalable:

Ability to build and evaluate complex, dynamic devices, autopilots have been built

Response to Issues(3)

Boeing Concept Mode Control Panel designed in Tool

- Involved in development work from beginning of cycle on NFT -> Sonic Cruiser -> 7E7
- Development work for future Boeing airplanes
- Boeing Designers used tool and task design methods to develop new concept autoflight system

Ongoing Work

- Testing computational analyses to aid HCI evaluation by domain experts without HCI expertise
- Integration with simulation software
- Extension into Distributed Air Ground Device Specification/Simulation

Thank You for your attention